Luminous Matter and Luminous Energy

Simon Driver (+MGC+GAMA teams)

University of St Andrews

Tracing the Luminous Matter and Luminous Energy

•Objectives:

- -Build an empirical description of the *baryon concentrations* at all epochs
- -Understand the *luminous energy* output within the Universe at all epochs

•Progress/Science:

- The Millennium Galaxy Catalogue (Medium Scale Galaxy Survey)
 A local census of 10k galaxies over 37 sq deg of sky
- -The significance of galaxy structure (the modes of evolution)
- -The problem of dust attenuation
- -The z=0 baryon breakdown and the energy budget (according to the MGC)
- -A blueprint of galaxy formation ?

•Future directions:

- -Galaxy And Mass Assembly (Legacy Scale Galaxy/Group Survey)
 •Going massively multi-wavelength
- -Galaxy And Mass Assembly Deep (Legacy Galaxy/Group Survey)
 •Pushing back to very early epochs

Cosmological Context

 $G_{\mu\nu}$ =- $\kappa T_{\mu\nu}$

Geometry(Dynamics) = Contents(Mass-Energy) Equation does not balance with normal luminous matter and energy. Needs extra stuff (DM,DE) or extra effects (Modified Gravity). Independent Observations (CMB, SnIa etc) ~ No of free parameters. Solving galaxy formation via numerics requires "knowing" the above. The empirical approach bypasses this issue and allows one to build a galaxy blueprint while the Dark debate goes on. Almost all recent advances have come from empirical breakthroughs. There is no robust (predictive) model of baryon evolution. Technological (multi-wavelength) explosion underway = big opportunity [(s)he who builds the best database will lead the gal. form debate]

The Millennium Galaxy Catalogue

The MGC Core Team

Simon Driver (St Andrews) Jochen Liske (ESO) Alister Graham (Swinburne) Ewan Cameron (ANU/St Andrews) David Hill (St Andrews)

MGC Collaborators

Chris Conselice (Nott.) Nicholas Cross (ROE) Roberto De Propris (CTIO) Simon Ellis (AAO) Richard Tuffs (MPIK) Cristina Popescu (UCLAN)

BUT...still a long way to go at z=0

MGC bulge/disc decomposition

Simard et al (1998)

Allen et al (2006)

Driver et al (2005)

YJHK(UKIRT) imaging now 50% complete

All data available online: http://www.eso.org/~jliske/mgc/

Example 1: MGC27301

Example 2: MGC61361

Galaxy bimodality in (u-r)-log(n)

Two populations or two components ?

Galaxy bimodality in (u-r)-log(n)

The Component Luminosity Functions

Driver et al (2007), ApJL

Purely empirical result Bulges severely attenuated in inclined systems up to 2 mag ex. face-on correction ! Driver et al (2007), MNRAS,(astro-ph/0704.2140)

Edge-On Lenticular Galaxy NGC 5866

Hubble Heritage

Elliptical Galaxy NGC 1316

Sombrero Galaxy • M104

NASA and The Hubble Heritage Team (AURA/STScI) • Hubble Space Telescope ACS • STScI-PRC03-28

Dust in Lenticulars

Sanity check I: cos(i) distributions

- In the absence of dust the cos(i) density distribution should be flat. Initially they're not.
- After implementing the dust correction they are !

Sanity II: Face-on v corrected LFs

Can construct component LFs using just face-on data and compare to LFs from corrected data. **Results fully** consistent Still need face-on correction

Sanity Check III

Similar results being reported from SDSS (although without bulge disc decomposition or a detailed dust model), e.g.,

Shao et al (2007), astro-ph/0611714
Choi et al (2007), astro-ph/0611607
Unterborm & Ryden (2008), astro-ph/0801.2400
Maller et al (2008), astro-ph/0801.3286
Padilla & Strauss (2008), astro-ph/0802.0877

All reporting severe impact of dust !
Popular tau=1 dust models fail

Face-on corr. via dust modeling

- We adopt the Tuffs and Popescu dust model and derive: τ_B = 3.8 +/- 0.7 (Popescu et al 2000, 2005; Tuffs et al 2004; Mollenhoff et a 2006)
- Model based on UV+ugrizJHK+Spitzer data of 6 nearby galaxies
- One free parameter = face-on central B band disc opacity

Dust Attenuation

Models imply that discs are optically thick in the centre, Hence ~*half* of bulge flux is attenuated in face-on systems =0.75 mag, (as dust has thickness our value is 0.84).

Implications of the MGC dust results

- The galaxy luminosity function
 The cosmic energy density estimates
 Stellar mass function estimates
 Morphological transformation via dust removal
 - 5. All faint galaxy photometry and size measurements require revision!

Dust attenuation versus λ

Using calibrated Tuffs & Popescu model can derive inclination-attenuation relation for any wavelength. Attenuation still an issue in K for highly inclined systems

Photon escape fraction averaged over entire nearby galaxy population

The stellar mass function

- More fundamental and more useful for comparisons to theory.
- (g-r) an OK
 predictor of M/L
 (Bell & de Jong
 2001)

The MGC Stellar Mass Function

Hubble type transformation ?!

- 1. Mid-type spiral falling into cluster (cosi=0.5): B=0.2, D=0.8, B/T=0.2, L=1.0, Blue Sc (NB: cos(i)=0.0=Sa, cos(i)=1=Sd)
- 2. destroy dust (heating): B=0.6, D=1.2, B/T=0.3, L=1.8 Green Sab
- 3. Truncate star-formation in disc (stripping): B=0.6, D=0.8, B/T=0.4, L=1.4, Red Sa/S0
- 4. Further fading and harassment etc: B=0.6, D=0.6, B/T=0.5, L=1.2, Red S0a

5. Transformation from Sc-S0 purely by removing dust and switching off SF! it gets *redder* and *brighter* without dry mergers!

Component Stellar Mass Functions

Spheroid formation

- Old population = early formation of stars
- [α/Fe]-enhanced = rapid formation (AGN feedback)
- SMBH-Bulge relation = formation coeval with peak of AGN activity, z>2.5
- No mini bulge-disc systems = mass regulation or downsizing with time
- Rapid merging or monolithic collapse ?
 - Merging: Elliptical SMF more massive than Bulge SMF
 - Collapse: Elliptical SMF = Bulge MF

Component Stellar Mass Functions

Component Stellar Mass Functions

A blueprint for galaxy formation ?

8+ Gyrs	DM assembly via rapid merging
	 major mergers destroy discs so must end before 8Gyrs (coincident with second inflation?)
10-13 Gyrs	Spheroid formation via (predominantly) rapid collapse
	-37% of stellar mass (secondary mode)
	 Mean age of spheroids 10-13Gyrs = AGN peak
	 alpha-enhancement = short burst (AGN moderated)
	 collapse inhibited during DM assembly=>downsizing
5-8 Gyrs	Disc growth via infall/splashback
	- 60% of stellar mass (dominant mode)
	 coupled with falling SFR
	- mean age of discs 5-8Gyrs
0-5 Gyrs	Pseudo-bulge growth & morphological transformations
	 ages unchanged (material just shuffled)
But what is the	variance, environmental & halo mass dependencies, and what about the neutral gas and plasma?

Optical image (Stars)

21cm image (Gas)

Galaxy And Matter Assembly

Comprehensive

- 250 sq degrees (5x50 sq deg. chunks), 250k galaxies (25x MGC)
- General science:
 - A study of structure on 1kpc-1Mpc scales, where baryon physics crucial
- Specific goals:
 - the CDM Halo mass function from group velocity dispersions
 - the stellar mass function into the intermediate mass regime
 - building total SEDs for galaxies and their components at z < 0.5
- Going massively multi-wavelength:
 - X-ray (XMM), UV (GALEX)
 - Optical: ugri (VST, SDSS), spectra (AAT)
 - Near-IR: ZYJHK (VISTA, UKIRT)
 - Far-IR (Herschel), sub-mm SCUBA-II
 - Radio: 21cm (ASKAP or meerKAT)
- Overcome secondary structural issues:
 - Nuclei-Bulge-Bar-Disc-Disc Truncation decompositions
- Disentangle environmental dependencies

GAMA Deep

SUBARU/WFMOS

ALMA

GAMA: Team Affiliations and Structure

PI: Driver (St Andrews)									
WORKING GROUPS/HEADS									
SCIENCE	CATS	DATABASE	OBS	MOCKS	RADIO	SPEC. PIPE.	IMAGE. PIPE.		
Peacock (ROE)	Baldry (LJMU)	Liske (ESO)	Driver (St And)	Norberg (ROE)	Hopkins (USyd)	Loveday (Sussex)	Bamford (Ports.)		
TEAM MEMBERS									
Bland-Haw'n (U.Syd)		n (U.Syd)	Lahav (UCL)			Tuffs (MPIA)			
Cameron (StA)		Oliver (Sussex)			van Kampen (Salzburg)				
Couch (Swin.)		Phillipps (Bristol)			van Kampen				
Croom (U.Syd)			Popescu (UCLan)			Warren (Imperial)			
Frenk (Durham)			Proctor (Swin.)			3 PDRAs pending			
Graham (Swin.)			Sharp (AAO)			3 PhD Students			

TEAM AFFILITATIONS:

Staveley-Smith (UWA)

Jones (AAO)

Kuijken (Leiden)

UKIRT/LAS, VST/KIDS, VISTA/VIKING, HERSCHEL-ATLAS, DURHAM ICC

Sutherland (Camb.)

GAMA12h proposed for Deep ASKAP followup

 GAMA depth and area well matched to the proposed ASKAP deep stare.

Ζ

The CDM halo mass fn

<u>SUMMARY</u>

Bimodality due to two component nature of galaxies:

Structure more fundamental than colour: structure=1st order tracer of formation mechanism? Fast/Hot mode (collapse/rapid merger) > Spheroids/AGN/SMBHs/high-[α /Fe], z > 2 Slow/Cold mode (accretion[lumpy]) > discs built slowly in field environment, z < 2-3

Stellar mass in each component: (D07 ApJL)

Discs = 60% Infall mode (half exponential, half truncated?, truncated are bluer)

Spheroids = 37% Collapse/Merger mode (ellipticals 10%, bulges 27%)

pBulges < 2% Secular mode (also see low luminosity blue spheroids at similar level)

Mean disc dust opacity high, bulges obscured by 0.8-2.5 mags ! (D07 MNRAS)

HTF an environmental effect of IGM & ICM ?

IGM allows disc construction via infall and dust production obscuring the bulges ICM shuts down SF and destroys dust diminishing disc and unveiling bulge Removing dust makes a galaxy redder and brighter (dry mergers may not be needed) Cosmic energy budget balances: lost starlight=far-IR dust emission (D08 submitted)

Luminous Matter and Luminous Energy

Simon Driver (+MGC+GAMA teams)

University of St Andrews

