Galaxy And Mass Assembly Survey: the key to a vital CDM model prediction?

Dark Matter: z=0

Galaxy Light: z=0

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

Galaxy And Mass Assembly Survey: the key to a vital CDM model prediction?

- Brief review of the current state of cosmology
- Biased review of some 2dFGRS & SDSS results
- The Galaxy And Mass Assembly survey
- Preliminary results from GAMA
- A few words about Pan-STARRS...

Conclusions

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

Constraints on the Standard Cosmological Model

- Cosmic Microwave Background -> Geometry ...
- Large-Scale Structure -> Matter content ...
- Supernovae Type Ia -> Accelerating Universe ...
- Cepheid Period-Luminosity relation -> H₀
- Weak-Lensing, ... -> Matter content ...

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

Cosmic Microwave Background: Temperature Fluctuations

Satellite & ground based experiments (COBE, WMAP, Boomerang, ...) have led to precision cosmology:

Credit: NASA/WMAP Science Team

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

Cosmic Microwave Background: Temperature Power Spectrum

Institute for Astronomy, Royal Observatory Edinburgh

Large-Scale Structure: Galaxy Distribution

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

Large-Scale Structure: Galaxy Power Spectrum

Large galaxy surveys, like SDSS & 2dFGRS, allow precise galaxy power spectrum measurements:

in redshift space & convolved with the survey window function

> Cole, Percival, Peacock, Norberg, et al. (the 2dFGRS Team) (2005)

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

Large-Scale Structure: power spectrum by colour & luminosity

Large-Scale Structure: comparison between SDSS & 2dFGRS

Comparison between different P(k) estimates: agreement to within the errors!

Cole, Percival, Peacock, Norberg, et al. (the 2dFGRS Team) (2005)

Institute for Astronomy, Royal Observatory Edinburgh

Large-Scale Structure: baryonic accoustic oscillations

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

Combined with H_0 & SN Ia measurements, CMB & LSS confirm a standard cosmological picture:

- flat universe: $\Omega_{m} + \Omega_{\Lambda} \simeq 1$
 - Ω_m : matter energy density
 - Ω_{Λ} : vacuum energy density -> Dark Energy
- $\Omega_{\rm m} \simeq \Omega_{\rm CDM} + \Omega_{\rm b} + \Omega_{\rm v}$ (today)
 - $\Omega_{\rm CDM}$: Cold Dark Matter
 - Ω_{b} , Ω_{v} : baryons & neutrinos
- $H_0 = 72 \pm 8 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (NB: h = $H_0 / 100 \text{ km s}^{-1} \text{ Mpc}^{-1}$)

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

Combined with $H_0 \& SN$ Ia measurements, CMB & LSS confirm a standard cosmological picture:

- flat universe: $\Omega_{m} + \Omega_{\Lambda} \simeq 1$
 - $\Omega_{m} h \approx 0.17 \pm 0.02$: matter energy density
 - $\Omega_{\Lambda} \simeq 0.75 \pm 0.03$ (vacuum energy density -> DE)
- $\Omega_{\rm m} \simeq \Omega_{\rm CDM} + \Omega_{\rm b} + \Omega_{\rm v}$ (today)
 - $\Omega_{CDM} \simeq 0.19 \pm 0.05$ (Cold Dark Matter energy density)
 - $\Omega_{\rm b}$ / $\Omega_{\rm m}$ $\simeq 0.185 \pm 0.046$ (baryon fraction)
- $H_0 = 72 \pm 8 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (NB: h = $H_0 / 100 \text{ km s}^{-1} \text{ Mpc}^{-1}$)

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

Combined with H_0 & SN Ia measurements, CMB & LSS confirm a standard cosmological picture:

Peder Norberg Institute for Astronomy, Royal Observatory Edinburgh

Two fundamental questions for the very successful Λ CDM model:

- nature of cold dark matter (CDM)
- nature of Dark Energy (Λ)

Observational / Survey cosmology:

- unlikely to explain the nature of DE or CDM
- key in providing unique model constraints

Robust theoretical predictions exist / are needed:

• shape of cold dark matter halo mass function -> GAMA

• evolution of the DE equation of state -> Pan-STARRS

Peder Norberg

Two fundamental questions for the very successful Λ CDM model:

- nature of cold dark matter (CDM)
- nature of Dark Energy (Λ)

Observational / Survey cosmology:

- unlikely to explain the nature of DE or CDM
- key in providing unique model constraints

Robust theoretical predictions exist / are needed:

• shape of cold dark matter halo mass function -> GAMA

• evolution of the DE equation of state -> Pan-STARRS

Peder Norberg

CDM halo mass function

For a given cosmology, the CDM halo mass function is very well predicted (\sim 10% accuracy), but not tested...

Jenkins et al. (2001) April 2008, Swinburne University

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

CDM halo mass function

For a given cosmology, the CDM halo mass function is very well predicted (\sim 10% accuracy), but not tested...

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

2dFGRS & SDSS: two unique galaxy redshift surveys

• $\sim \frac{1}{4}$ of the sky:

- SDSS: r < 17.77
- L* galaxy at z~0.14 [~400 Mpc/h] • 2dFGRS: b₁ < 19.4
- SDSS 5 band CCD imaging (u, g, r, i, z):
 - essential colour information => galaxy properties
 - photometric redshifts, for r > 17.77
- $\sim \frac{3}{4}$ million galaxy spectra & redshifts:
 - main samples: z_{med}~0.11 [z_{95%} ~0.27]
 - LRG sample: $z_{med} \sim 0.50 [z_{5\%} \sim 0.25 \& z_{95\%} \sim 0.60]$

• Two orders of magnitude improvement wrt. previous redshift surveys (CfA, Stromlo-APM, LCRS, ...)

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

2dF Galaxy Redshift Survey: a short summary

General facts about 2dFGRS:

- 225,000 galaxy spectra, <z> ~ 0.11
- probe scales from ~0.1 to ~600 Mpc/h
- $_{\rm -}$ ~1500 sq. deg. down to b $_{\rm J}$ ~ 19.35
- Magnitude limited survey, using UKST photographic plates :
 - $-14.0 \le b_j \le \sim 19.4$, with $\sigma(b_j) \sim 0.12$
 - galaxy completeness ~91%
 - stellar contamination ~6%
 - (b_J-r_F) from SCOS.

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

2dF Galaxy Redshift Survey: a short summary

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

2dF Galaxy Redshift Survey:

2dF Galaxy Redshift Survey: a short summary

Connection between spectral type and galaxy morphology

(Norberg et al. 2002a)

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

2dF Galaxy Redshift Survey: optical galaxy luminosity function

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

2dF Galaxy Redshift Survey: survey selection function

(Norberg et al. 2002b)

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

2dF Galaxy Redshift Survey: luminosity & type dependent clustering

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

2dFGRS Percolation Inferred Galaxy Group Catalogue (2PIGG)

~29,000 groups with 2 or more members
~7,000 groups with at least 4 members

(Eke et al. 2004)

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

2dFGRS Percolation Inferred Galaxy Group Catalogue (2PIGG)

Dynamical group mass estimator: $\sigma^{2} = \sigma_{gap}^{2} \left(\frac{N}{N-1} \right) - \sigma_{err}^{2}$ $M = \frac{5 r \sigma^2}{C}$ with 5 so as to match DM FOF b=0.2 halo masses. $\sigma_{_{\rm gap}}$ see Beers, Flynn & Gebhardt (1990).

(Eke et al. 2004)

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

2PIGG Luminosity Functions: split by dynamical group mass

(Eke et al. 2004)

Peder Norberg Institute for Astronomy, Royal Observatory Edinburgh

2PIGG Mass-to-Light ratio: measure of galaxy formation efficiency

(Eke et al. 2004)

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

2PIGG Group Mass Function: some constraint on ΛCDM...

• 2dFGRS (like SDSS): unable to provide any constraints on the CDM halo mass function.

 Too small halo mass range probed!

• Too large influence from error on σ_8 over that halo mass range.

Institute for Astronomy, Royal Observatory Edinburgh

Galaxy And Mass Assembly Survey: the key to a vital CDM model prediction?

- Next generation galaxy redshift survey:
 - ~250,000 galaxy spectra to r~19.8:
 - 2 mag. fainter than SDSS => L^* at $z \sim 0.35$ [~4 Gyr]
 - 250 sq. deg. wide, overlapping with SDSS and 2dFGRS
 - 66 nights on AAOmega over 3 years (2008-2010)
 - large fraction of the survey is also K-band limited
- GAMA is a unique survey and fills an essential gap in the current generation of redshift surveys, between the very wide low-z and very narrow high-z.
- GAMA Team led by S. Driver, with 7 Co-Pls:
 - Baldry, Bamford, Hopkins, Liske, Loveday, Norberg & Peacock
 - ~20 associate members + 5 consortiums (like VISTA/VIKING, ...)

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

Galaxy And Mass Assembly Survey: germane connection between shallow-wide & deep-narrow

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

Galaxy And Mass Assembly Survey: germane connection between shallow-wide & deep-narrow

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

Galaxy And Mass Assembly Survey: germane connection between shallow-wide & deep-narrow

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

Galaxy And Mass Assembly Survey: where are the fields?

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Galaxy And Mass Assembly Team Structure

WORKING GROUPS

SCIENCE Peacock (ROE)

CATS Baldry (LIMU)

DATABASE Liske Driver (ESO) (PI, StA)

OBS MOCK/THEORY Norberg (ROE)

Hopkins (Sydney)

RADIO SPEC. P. Lovedav (Sussex)

IMAGE P. Bamford (Nott.)

TEAM MEMBERS

Bland-Hawthorn (Sydney) Croom (Sydney) Frenk (Durham) **Kuijiken (Leiden)** Nichol (Portsmouth) **Proctor (Swinburne)** Sutherland (OMUL) Warren (Imperial College)

Couch (Swinburne) Cross (ROE) Graham (Swinburne) Lahav (UCL) Phillipps (Bristol) Sharp (AAO) **Tuffs (MPIK)**

Concelice (Nottingham) Edmondson (Portsmouth) Jones (AAO) **Oliver** (Sussex) **Popescu (UCLan) Staveley-Smith (UWA)** van Kampen (Innsbruck)

4 PhD students: Cameron (StA), Hill (StA), Parkinson (ROE), Prescott (LIMU)

TEAM AFFILITATIONS

UKIRT/LAS, VST/KIDS, VISTA/VIKING, HERSCHEL-ATLAS, DURHAM ICC

URL: http://www.eso.org/~jliske/gama/

Peder Norberg Institute for Astronomy, Royal Observatory Edinburgh April 2008, Swinburne University

GAMA: Contributing Facilites

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Follow up observations

GAMA:	Facility	Wavelength	Time	Depth (on GAMA)	(5σ, AB)	Status
	ΑΑΤ/ΑΑΩ (GAMA I)	Spectra	66nights	r < 19.8, K=1	.9.0 mag	in progress
	(GAMA I) (GAMA II)		~100nights			in planification
	<mark>UKIRT</mark> (LAS)	Near-IR (YJHK)	35nights	Y=22.0, J=20	.9, H=20.2, K=20.4	in progress
	<mark>VISTA</mark> (VIKING)	Near-IR (YJHK)	75nights	Z=23.8, Y=23	8.0, J=22.8, K=21.9	Mar 09
E.	VST (VST)	Optical (ugriz)	120nights	u=24.8, g=25	5.4, r=25.2, i=24.2	Mar 09
	HERSCHE ATLAS	L Far-IR	200hours	100, 160, 250 67, 94, 45), 350, 500 microns 5, 62, 53 mJy	Mar 09
	XMM	X-Ray I	Meeting in Par	is (April'08) to (discuss 100 sq deg s	survey ?
	ASKAP DEEP	Radio (21cm) N	Meeting in Per	th (April'08) to	discuss SKA Pathfind	ders ?

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh April 2008, Swinburne University

GAMA: Follow up observations planned VST survey starting March 2009

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Follow up observations planned VISTA survey starting March 2009

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Follow up observations to be proposed ASKAP/Deep...

Peder Norberg Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Follow up observations GAMA 12h proposed for ASKAP Deep Observation

 GAMA depth and area well matched to the proposed ASKAP deep field.

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Science Goals

• General Aim:

- Study the kpc to Mpc scale, where baryon physics is critical
- Tracing how "mass" (stars, dust, gas) follows light
- Provide a definitive low redshift benchmark for JWST and SKA

• Specific science goals:

- Determine the CDM Halo Mass function using galaxy groups
- Quantify galaxy formation efficiency via group mass-to-light ratios
- Characterize stellar mass function into the dwarf regime
- Estimate the HI mass function and associate gas/stellar mass ratios
- Measure the galaxy merger rate as function of stellar mass ratio
- Provision of a SDSS/2MASS like public database:
 - Optical: ugri (VST), spectra (AAT)
 - Near-IR: ZYJHK (VISTA)
 - Far-IR: 100-500 microns (HERSCHEL)
 - Radio: 21cm (ASKAP/DEEP)

GAMA: CDM Mass Function predictions from semi-analytic galaxy formation models

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Stellar Mass Function predictions from

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

		A	В	С	D	E	F	G	Н	I
	x	09_AX 98% (341/347) 100% (327/327)	09_BX 98% (320/325) 98% (344/350)	09_CX 99% (346/350) 97% (316/327)	09_DX 98% (322/327) 99% (346/350)	09_EX 99% (324/327) 99% (346/349)	09_FX 99% (323/327) 99% (346/349)	09_GX 98% (322/327)	09_HX	
G09	N	09_AN 95% (319/336) 97% (317/326)	09_BN 97% (318/336) 98% (321/326)	09_CN 95% (325/341) 98% (324/331)	09_DN 97% (318/327) 99% (340/342)	09_EN 98% (321/327) 98% (335/342)	09_FN 99% (326/327) 96% (329/342)	09_GN 99% (337/341) 91% (312/342)	09_HN 99% (339/341) 98% (317/325)	09_IN 95% (311/326) 88% (299/339)
	s	09_AS 97% (313/322) 99% (335/339)	09_BS 98% (315/322) 88% (301/344)	09_CS 98% (322/327) 99% (339/342)	09_DS 98% (335/341) 100% (327/328)	09_ES 99% (339/341) 99% (325/328)	09_FS 99% (338/341) 99% (327/328)	09_GS 95% (312/327) 99% (324/329)	09_HS 92% (313/339) 96% (316/328)	09_15 93% (316/339) 97% (328/339)
	x	12_AX 98% (344/350) 99% (325/327)	12_BX 99% (323/325) 99% (348/350)	12_CX 99% (346/350) 98% (322/327)	12_DX 98% (320/327) 98% (344/350)	12_EX 97% (339/349) 97% (338/349)	12_FX 99% (323/327) 98% (342/349)	12_GX	12_HX	
012	N	12_AN 91% (298/322)	12_BN 97% (332/341) 99% (340/342)	12_CN 96% (317/327) 99% (325/328)	12_DN 96% (327/341) 99% (324/328)	12_EN 99% (323/326) 93% (317/342)	12_FN 88% (297/339) 95% (313/328)	12_GN 96% (324/339) 95% (310/328)	12_HN 98% (331/339) 97% (333/342)	12_IN 97% (330/339) 99% (325/328)
GIZ	D	12_AD: 86% (289/336) 75% (244/326)	12_BD 91% (295/322) 95% (311/326)	12_CD 95% (323/341) 95% (324/342)	12_DD 98% (322/327) 94% (308/328)	12_ED 98% (333/341) 95% (312/328)	12_FD 94% (322/341) 89% (305/342)	12_GD 93% (304/327) 97% (319/328)	12_HD 97% (316/327) 96% (313/325)	12_ID 90% (311/341) 92% (291/318)
	s	12_AS 91% (294/322) 97% (332/344)	12_BS 99% (323/327) 98% (336/342)	12_CS 98% (321/327) 97% (332/344)	12_DS 99% (323/326) 96% (330/342)	12_ES 96% (331/340) 97% (321/331)	12_FS 94% (320/339) 98% (320/328)	12_GS 97% (317/326) 98% (336/342)	12_HS 99% (324/326) 96% (328/342)	12_IS 98% (324/329) 97% (328/339)
	N	15_AN 86% (282/328) 98% (336/342)	15_BN 99% (338/341) 98% (336/342)	15_CN 98% (321/327) 98% (320/325)	15_DN 83% (271/326) 98% (340/347)	15_EN 98% (318/326) 99% (342/347)	15_FN 98% (336/342) 100% (323/324)	15_GN 98% (336/342) 100% (323/324)	15_HN 98% (322/328) 98% (341/347)	15_IN 98% (321/328) 99% (345/350)
G15	s	15_AS 94% (317/336) 97% (317/328)	15_BS 98% (333/341) 97% (319/328)	15_C8 99% (338/341) 100% (347/347)	15_D8 98% (331/339) 85% (274/324)	15_E8 95% (310/326) 99% (344/347)	15_FS 97% (319/329) 99% (322/324)	15_G8 98% (335/342) 100% (349/350)	15_HS 98% (336/342) 87% (281/324)	15_IS 94% (320/342) 98% (322/327)
	x	15_AX 99% (345/350) 95% (308/324)	15_BX 100% (326/327) 98% (343/349)	15_CX 99% (324/327) 99% (344/349)	15_DX	15_EX	15_FX	15_GX 98% (322/327)		

Peder Norberg Institute for Astronomy, Royal Observatory Edinburgh

Sat Apr 5 21:37:22 CEST 2008

159 observations

G09	N	09_AN 95% (319/336)	total:	50746	out of	52557:	96.55%	5	
	•	97% (317/326) 09_AS	jol:	15494	out of	15835 :	97.85%	5	
	3	97% (315/522) 99% (335/339)	dth:	5653	out of	5881:	96.12%	5	
	×	12_AX 98% (344/350) 99% (325/327)	spd:	4924	out of	5266 :	93.51%	i	
	N	12_AN	evk:	4791	out of	⁻ 4957:	96.65%	5	
G12		91% (296/322)	iprn:	4253	out of	4354:	97.68%	i	
	D	86% (289/336) 75% (244/326)	mxp:	4122	out of	4322:	95.37%	i	
	s	12_AS 91% (294/322) 97% (332/344)	jon:	4132	out of	4309:	95.8%	5	
	N	15_AN	hrp:	3898	out of	⁻ 3995:	97.57%	5	
		98% (336/342)	amh:	3209	out of	3318:	96.71%	i	
G15	s	15_A8 94% (317/336) 97% (317/328)	rgs:	270	out of	- 320 :	84.38%	5	
	x	15_AX 99% (345/350) 95% (308/324)			_	_		_	
1			Q = 0	1	2	- 3	4	5	
			10	126	1675	4450 45	099 10)77	1

Н	I
09_HX	
09_HN	09_IN
99% (339/341)	95% (311/326)
98% (317/325)	88% (299/339)
09_HS	09_15
92% (313/339)	93% (316/339)
96% (316/328)	97% (328/339)
12_HX	
12_HN	12_IN
98% (331/339)	97% (330/339)
97% (333/342)	99% (325/328)
12_HD	12_ID
97% (316/327)	90% (311/341)
96% (313/325)	92% (291/318)
12_HS	12_IS
99% (324/326)	98% (324/329)
96% (328/342)	97% (328/339)
15_HN	15_IN
98% (322/328)	98% (321/328)
98% (341/347)	99% (345/350)
15_HS	15_IS
98% (336/342)	94% (320/342)
87% (281/324)	98% (322/327)

Peder Norberg

09_AX 98% (341/347)

Institute for Astronomy, Royal Observatory Edinburgh

April 2008, Swinburne University

6

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Preliminary Results tracing in detail the large scale structure

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Preliminary Results tracing in detail the large scale structure

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Preliminary Results tracing in detail the large scale structure

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Preliminary Results global galaxy redshift distribution

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Preliminary Results calibration of SDSS photometric redshifts

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Preliminary Results disentangling AGNs from starbursting galaxies

BPT diagrams:

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Preliminary Results optical galaxy luminosity function (z<0.1)

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Preliminary Results galaxy star formation rate vs redshift

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

GAMA: Preliminary Results colour bi-modality vs redshift

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

Galaxy And Mass Assembly: the key to a vital CDM model prediction?

- What is GAMA?
 - New generation SDSS scale survey: 250 sq deg, 2mag deeper than SDSS
 - Multi-wavelength: AAT, VST, VISTA, HERSCHEL (XMM, SCUBA II, ASKAP)
 - Comprehensive study of matter and energy on Mpc to kpc scales z < 0.4
- Overlap with ASKAP/DEEP?
 - Superb overlap with ASKAP field-of-view
 - Comparable n(z) distributions
 - Will spectroscopically resolve ASKAPs 10" beam
 - Will provide: optical, near-IR, far-IR, & spectra for galaxies in ASKAP/DEEP
- GAMA update:
 - GAMA started March 1st 2008
 - >50k spectra measured in 3 weeks with AAT/AA Ω : >95% target completeness
 - Preliminary science: LF, colour bi-modality, BPT, SFR, photo-z calibration, ...
- How you can get involved:
 - Annual data release (December 2008...)
 - Website: http://www.eso.org/~jliske/gama/
 - Contact: Simon Driver spd3@st-andrews.ac.uk .

Peder Norberg Institute for Astronomy, Royal Observatory Edinburgh

Pan-STARRS PS1: Consortium Composition

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

Pan-STARRS PS1: 3π & **MD** surveys the key to a vital Dark Energy constraint?

- 1.8m on Haleakala (Maui, Hawaii)
- Test technology needed for PS4 (telescope design, cameras & data reduction software)
- Pan-STARRS PS1 surveys:
 - $3\pi \&$ Medium Deep survey (LSS)
 - Solar System Sweet Spot Survey
 - Stellar Transit Survey
 - Deep Survey of M31
- Camera consists of an array of 64x64 CCDs (600x600 pixels): 1.4 Gpixels spread over 40 cm x 40 cm!
- Orthogonal transfer allows for a shift of the image during the observation
 -> tip-tilt correction on the chip
- Expected data flow: ~50 Tb / month

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh April

Pan-STARRS PS1: 1.4 Gigapixel camera with 7 sq.deg FoV

Peder Norberg Institute for Astronomy, Royal Observatory Edinburgh

Pan-STARRS PS1: a small shutter...

The "Bonn - Shutter":

- Length: 1.664 m
- Width: 63.2 cm
- Depth: 5 cm
- Shutter aperture: 48 x 48 cm
- Mass: 30 kg
- Uniform exposure
- Has to open and close up to a million times!
- Shortest possible exposure: 300µs
- Homogeneity of exposure:
 0.3% at 0.2s

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

Pan-STARRS PS1: filter selection

- Expected good photo-z for red galaxies; more work for blue galaxies...
- Galaxy property studies: will benefit to be combined with other surveys (photometric & spectroscopic)

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

Pan-STARRS PS1: one shot at M31

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh

Pan-STARRS PS1: 3π & Medium Deep surveys

• Pan-STARRS 3π survey (3.5 yrs):

- 56% of total observing time
- Each field visited 4 times in each band pass
- Depth: $r_{_{AB}} \sim 24.1$, $y_{_{AB}} \sim 21.5$
- Pan-STARRS Medium Deep survey (3.5 yrs):
 - 25% of total observing time
 - 10 footprints distributed uniformly across the sky (nightly depth optimized for SN Ia studies at z~0.5)
 - 84 square degrees
 - L* galaxies at z=1.8 -> Depth: $r_{AB} \sim 27.0$, $y_{AB} \sim 24.8$
- Expect ~10⁷ LRGs to z~1, with $\sigma_{z}/(1+z) < 3\%$
- Main cosmology aim: measure w to 3% accuracy

Peder Norberg Institute for Astronomy, Royal Observatory Edinburgh

Pan-STARRS PS1: 3π & Medium Deep survey depths

Table 11. Estimated Sensitivities for the 3π Survey. The tabulated numbers use the above equations and assume 75 micron chips, aluminum coating, effective loss of 0.35 area from secondary mirror blockage and diffraction from baffles and secondary mirror support structure. The average sky brightness μ at Haleakala assumes the Wainscoat light pollution factor in g and r band, and an average air mass of 1.4 is assumed. The FWHM is taken to be 0.78 arcsec, or three pixels assuming OTA improvement. A read noise of 5 electrons rms is assumed, and an optimistic zero contribution from RFI.

Filter	Bandpass (nm)	${}^{m_1}_{AB}$ mag	$\stackrel{\mu}{ m AB}{ m mag/asec^2}$	exposure time/visit sec	5σ trailed NEO/visit	5σ pt. source per visit	visits in one night	visits per year	visits per 3 yrs	5σ pt. source in 3 yrs
q	405-550	24.90	21.90	60	23.08	23.24	2	4	12	24.66
r	552-689	25.15	20.86	38	22.63	22.71	2	4	12	24.11
i	691-815	25.00	20.15	60	22.47	22.63	2	4	12	23.96
z	815-915	24.63	19.26	30	21.53	21.59	2	4	12	22.98
y	967-1024	23.03	17.98	30	20.08	20.13	2	4	12	21.52

Table 13. Estimated PS1 Sensitivities for the Medium Deep Survey. The tabulated numbers use the same assumptions as those listed for the 3pi Survey.

Filter	Bandpass (nm)	m ₁ AB mag	$\substack{\mu \ AB \ mag/asec^2}$	exp time sec	5σ point source in 4 nts	5σ point source in 1 yr	5σ point source in 3 yrs
g	405-550	24.90	21.90	3×240	24.80	26.72	27.32
r	552 - 689	25.15	20.85	3×240	24.44	26.36	26.96
i	691 - 815	25.00	20.15	6×240	24.38	26.31	26.91
z	815-915	24.63	19.26	6×240	23.77	25.69	26.29
y	967-1024	23.03	17.98	6×240	22.32	24.24	24.84

Peder Norberg

Institute for Astronomy, Royal Observatory Edinburgh