

The GAMA Group Catalogue: Construction & Application(s)

Meiert W. Grootes MPIK , Heidelberg

With A. S. G. Robotham, R. J. Tuffs and the GAMA team

XMM-XXL consortium meeting Sesto 25.06.2014

OUTLINE

I) <u>The GAMA Group Catalogue (G³C)</u>
 On behalf of Aaron S. G. Robotham
 (A. S. G. Robotham, et al. 2011, MNRAS, 416, 2640)

II) Science using the $G^{3}C$

Gas-fuelling as a function of environment (Grootes et al, in prep.)

XMM-XXL consortium meeting Sesto 25.06.2014

Sesto 25.06.2014

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

Mon. Not. R. Astron. Soc. 416, 2640-2668 (2011)

doi:10.1111/j.1365-2966.2011.19217.x

Galaxy and Mass Assembly (GAMA): the GAMA galaxy group catalogue (G^3Cv1)

A. S. G. Robotham,^{1*} P. Norberg,² S. P. Driver,^{1,3} I. K. Baldry,⁴ S. P. Bamford,⁵
A. M. Hopkins,⁶ J. Liske,⁷ J. Loveday,⁸ A. Merson,⁹ J. A. Peacock,² S. Brough,⁶
E. Cameron,¹⁰ C. J. Conselice,⁵ S. M. Croom,¹¹ C. S. Frenk,⁹ M. Gunawardhana,¹¹
D. T. Hill,¹ D. H. Jones,¹² L. S. Kelvin,¹ K. Kuijken,¹³ R. C. Nichol,¹⁴
H. R. Parkinson,² K. A. Pimbblet,¹² S. Phillipps,¹⁵ C. C. Popescu,¹⁶ M. Prescott,⁴
R. G. Sharp,¹⁷ W. J. Sutherland,¹⁸ E. N. Taylor,¹¹ D. Thomas,¹⁴ R. J. Tuffs,¹⁹
E. van Kampen⁷ and D. Wijesinghe¹¹

Constructing FoF Groups

- At the simplest level we:
 - Calculate the GAMA luminosity function (LF).
 - Require that galaxies are significantly linked when they are locally overdense.
 - Do this separately radially and in projection.
 - Then construct groups out of common linking.
- Algorithm is calibrated on mock GAMA lightcones (Millenium Simulation + SAM).
 - > quantitative optimization

Meiert W. Grootes

Robotham+2011

- Robustly determine critical parameters σ and group center
- Gapper estimate (Beers+1990, Eke+2004) for σ
- Iterative CoL for group center

Direct Group Properties

XMM-XXL consortium meeting Sesto 25.06.2014

- Robustly determine critical parameters σ and group center
- Gapper estimate (Beers+1990, Eke+2004) for σ
- Iterative CoL for group center
- Combine with robust estimate of group radius

XMM-XXL consortium meeting Sesto 25.06.2014

Direct Group Properties

<u>M α σR^2 : Mass estimator</u>

- Worry about correlated bias
- No evidence for strong correlated biases
- Viable mass estimator

XMM-XXL consortium meeting Sesto 25.06.2014

<u>MασR²: Mass estimator</u>

Robotham+2011

<u>MασR²: Mass estimator</u>

Robotham+2011

Global Group Properties

Robotham+2011

XMM-XXL consortiu Sesto 25.06.2014

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

So what is going on at low mass ?

 Problem appears to be that the mocks (MS + SA) produce far too many compact groups.

• It would appear that the recipe used for "simulating" dynamical friction is far too crude, and doesn't merge groups rapidly enough.

The GAMA Galaxy Group Catalog

Region	Groups	Gals in Groups
G02	3,476	10,172
G02 (XXL)	1,919	5,836
G09	7,558	22,845
G12	8,235	25,443
G15	8,045	24,980
G23	2,692	7,968

 Generally we place ~40% of GAMA r<19.8 galaxies into groups.

XMM-XXL consortium meeting Sesto 25.06.2014

•Red circles indicate full extent of GAMA group

Credit: A. Robotham

ÜR KERNPHYSIK

•Black crosses indicate XXL sources (all within XXLN cat) within this extent.

•Gray points indicate all other XXL sources.

•3,222 / 9,474 XXLN objects lie within the projected extent of *known* GAMA groups.

XMM-XXL consortium meeting Sesto 25.06.2014

Robotham+2011

XMM-XXL consortium meeting Sesto 25.06.2014 Meiert W. Grootes

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

Beyond Groups: Filaments, Tendrils, and Voids

Galaxy and Mass Assembly (GAMA): Fine filaments of galaxies detected within voids

Mehmet Alpaslan^{1,2}, Aaron S.G. Robotham², Danail Obreschkow², Samantha Penny³,

M. Alpaslan et al, 2014, MNRAS, 440,106

Current GAMA Group Papers

· · · · · · · · · · · · · · · · · · ·			
Γ	Γ	□ <u>2011MNRAS.416.2640R</u>	1.000 10/2011 <u>A E F X R C S U</u>
2011	\leq	Robotham, A. S. G.; Norberg, P.; Driver, S. P.; Baldry, I. K.;	Galaxy and Mass Assembly (GAMA): the GAMA galaxy group catalogue (G ³ Cv1)
	$\sum_{i=1}^{n}$	○ 2012IAUS 284 352C	
2012	Grootes, Meiert W.;	Environmental dependence of SFRs in late-type GAMA galaxies	
	Tuffs, Richard J.: Andrae, Ellen:		
	Colored A S G Baldry I K	1.000 $08/2012 \underline{A} \underline{E} \underline{F} \underline{X} \underline{K} \underline{C} \underline{S} \underline{N} \underline{U}$ Calaxy And Mass Assembly (GAMA): in search of Milky Way Magellanic Cloud analogues	
	Bland-Hawthorn, J.; Driver, S. P.;	, Guary Find Muss resembly (Griving). In sector of Minky Way Magenanic Croad analogues	
	D 2012MNRAS.426.2832A	1.000 11/2012 <u>A E F X R C U</u>	
		Alpaslan, Mehmet; Robotham, Aaron S. G.:	Galaxy And Mass Assembly (GAMA): estimating galaxy group masses via caustic analysis
	□ <u>2013AN334466L</u>	1.000 04/2013 A E F X R U	
	Lara-López, M. A.; Hopkins, A. M.; Robotham, A.;	Galaxy And Mass Assembly (GAMA): The M-Z relation for galaxy groups	
		□ <u>2013MNRAS.431167R</u>	1.000 05/2013 <u>A</u> <u>E</u> <u>F</u> <u>X</u> <u>R</u> <u>C</u> <u>S</u> <u>U</u>
2013	Robotham, A. S. G.; Liske, J.; Driver, S. P.; Sansom, A. E.;	Galaxy And Mass Assembly (GAMA): the life and times of L★ galaxies Galaxy evolution	
	□ <u>2013ApJ772104O</u>	1.000 08/2013 <u>A E F X D R C S U</u>	
	Owers, M. S.; Baldry, I. K.; Bauer, A. E.; Bland-Hawthorn,	Galaxy and Mass Assembly (GAMA): Witnessing the Assembly of the Cluster ABELL 1882 J.;	
		□ <u>2013MNRAS.433.2727S</u>	1.000 08/2013 <u>A E F X R C S U</u>
	Schneider, Michael D.; Cole, Shaun; Frenk, Carlos S.;	Galaxy And Mass Assembly (GAMA): galaxy radial alignments in GAMA groups	
	<u>6.</u>	□ <u>2013MNRAS.435.2903B</u>	1.000 11/2013 $\underline{A} \underline{E} \underline{F} \underline{X} \qquad \underline{R} \underline{C} \underline{S} \qquad \underline{U}$
	Brough, S.; Croom, S.; Sharp, R Hopkins, A. M.; Taylor, E. N.;	.; Galaxy And Mass Assembly: resolving the role of environment in galaxy evolution	
	Ć	□ <u>2014arXiv1401.0986G</u>	1.000 01/2014 <u>A</u> <u>X</u> <u>C</u> <u>U</u>
2014	Guo, Qi; Lacey, Cedric; Norberg, Peder; Cole, Shaun;	Herschel-ATLAS/GAMA:How does the far-IR luminosity function depend on galaxy group properties?	
	□ <u>2014MNRAS.438177A</u>	1.000 02/2014 <u>A</u> <u>E</u> <u>F</u> <u>X</u> <u>R</u> <u>C</u> <u>U</u>	
		Alpasian, Menmet; Robotham. Aaron S. G.:	Galaxy And Mass Assembly (GAMA): the large-scale structure of galaxies and comparison to mock universes
2014.	5	□ <u>2014MNRAS.4407620</u>	1.000 05/2014 <u>A</u> <u>E</u> <u>F</u> <u>X</u> <u>R</u> <u>C</u> <u>U</u>
VMM VVI		Oliva-Altamirano, P.; Brough, S Lidman, C.; Couch, W. J.;	S.; Galaxy And Mass Assembly (GAMA): testing galaxy formation models through the most massive galaxies in the Universe
AIVIIVI-AAL consort	iun meetin	2014MNRAS.440L.106A	1.000 05/2014 <u>A</u> <u>E</u> <u>F</u> <u>X</u> <u>R</u> <u>C</u> <u>U</u>
Sesto 25.06.2014		Alpaslan, Mehmet; Robotham, Aaron S. G.;	Galaxy and Mass Assembly (GAMA): fine filaments of galaxies detected within voids MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

II) Gas-fuelling as a Function of Environment

XMM-XXL consortium meeting Sesto 25.06.2014

Why Bother with Gas-fuelling ?

• DM Structure formation well understood in context of LCDM but processes by which baryonic mass component of galaxies is assembled are much more unclear.

Why Bother with Gas-fuelling?

FÜR KERNPHYSIK

• DM Structure formation well understood in context of LCDM but processes by which baryonic mass component of galaxies is assembled are much more unclear.

Why Bother with Gas-fuelling ?

• DM Structure formation well understood in context of LCDM but processes by which baryonic mass component of galaxies is assembled are much more unclear.

Why Bother ?

• DM Structure formation well understood in context of LCDM but processes by which baryonic mass component of galaxies is assembled are much more unclear.

LACKS direct empirical reference/constrants !!

Remedy this situation using GAMA

Use local spirals as test particles and use their SFR to probe influence of environment on processes driving galaxy evolution; isolate relevant processes as far as possible

Approach:

Basic Requirements:

- Ability to probe wide range of environments down to low halo masses The G³C provides the perfect database
- Ability to isolate galaxy-galaxy interactions from galaxy-IGM interactions do not consider close pairs/interacting galaxies
- Ability to isolate galaxy specific effects, in particular morphology Select a complete morphologically defined sample unbiased in SFR and employ SSFR-M* relation
- Sensitivity to timescales << t_{dyn} ≈ 1 Gyr
 Use NUV as starformation rate trace
- Very high precision in intrinsic SFR measures to be sensitive to small effects due to environment Use radiation-transfer based attenuation corrections
- Consider satellite & central galaxies separately

Requirements

XMM-XXL consortium meeting 22.-26.07.2013

GAMA Satellites and Centrals

- Group Central spirals show enhanced SFR
- Median SFR of satellite spirals suppressed w.r.t Field

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

XMM-XXL consortium meeting 22.-26.07.2013

GAMA Satellite Spirals by Environment

6

11.0

The Role of AGN

V.

Without AGN

GAM

With AGN

AGN: Central or not

Non-central AGN

Central AGN

10.0

 $\log(M_*/M_{\odot})$

Field

 $13.00 > \log(M_{dyn}/M_{\odot})$

 $13.60 < \log(M_{dvn}/M_{\odot})$

 $13.00 < \log(M_{dm}/M_{\odot}) < 13.60$

 0
 $M_* < 10^{10} M_{\odot}$ $M_* < 10^{10} M_{\odot}$

 0.00.05.10.15.20.25.300
 0.1
 0.2
 0.3
 0.400.050.100.150.200

 1
 $M_* < 10^{10} M_{\odot}$ rel. frequency
 rel. frequency
 rel. frequency

 1
 $M_* > 10^{10} M_{\odot}$ $M_* > 10^{10} M_{\odot}$ $M_* > 10^{10} M_{\odot}$ $M_* > 10^{10} M_{\odot}$

 0.00.05.10.150.20.25.000 0.05 0.100.150.20.000.10.150.20.000.050.100.150.20
 $M_* > 10^{10} M_{\odot}$ $M_* > 10^{10} M_{\odot}$

 0.00.05.10.165.20.25000 0.050.100.150.20.000.05.0.10.150.20.000.050.10.150.20.000.050.100.150.20
 $M_* > 10^{10} M_{\odot}$ $M_* > 10^{10} M_{\odot}$

 0.00.05.10.165.20.25000 0.050.100.150.20.000.10.150.20.000.05.0.10.150.20.000.050.100.150.000.050.000.050.000.050.000.050.000.050.000.050.000.

10.5

11.0

FÜR KERNPHYSIK

XMM-XXL consortium meeting Sesto 25.06.2014

• To create meaningful group catalogues we need to understand the biases expected by choosing different approaches to grouping

 Solution is to test on mock catalogues- created by Alex Merson (Durham) and Peder Norberg (see Merson 2013). This is a combination of the Millennium Simulation (MS) plus the GALFORM Semi-Analytic (SAM) galaxy formation recipe on top.

• 27 GAMA like volumes ($z= 0 \rightarrow 0.5$, 48 sqdeg) exist with known associations between dark matter halos and semi-analytic galaxies (Richard Bower 2006).

• In some sense, we need an approaching to grouping that does "the best job" at recovering correct groupings

XMM-XXL consortium meeting Sesto 25.06.2014

• Chosen approach is to optimise for both finding halos and accurately determining purity of halos

• To find halos we say match is successful when bijective: more than 1/2 of mock group is in same group as more than 1/2 of FoF group

- Find fraction of bijective FoF and mock groups where N>5 (because this is hard)
- To find halo purity find fraction of galaxies that are common as a fraction of best matching FoF/ mock group
 - Scale by multiplicity and calculate overall purity for FoF and mock groups
- This approach penalises over <u>AND</u> under grouping!

Groups: Technical Points

40

30

20

10 0

5.0

1e12

5.0

1e13

MassAfunc

5.0

1e14

5.0

XMN

Seste

Max-PLANCK-INSTITUT FÜR KERNPHYSIK

Area: 280 deg²

~250,000 spec z

Placed between shallow and deep surveys

Robust against cosmic variance

Probes LSS over cosmological volume

www.gama-survey.org

XMM-XXL consortium meeting Sesto 25.06.2014

The GAMA Survey: redshifts ...

... but not any old redshifts

- Much effort has been put into ensuring GAMA is highly complete on compact (sub 30") scales.
- Implemented "greedy" tiling (details in Robotham et al 2010)
- In dense regions SDSS drops to ~50% completeness. High completeness inside the group/ cluster scale requires multipointing strategy.
- GAMA >98% complete overall and >95% complete for 5 neighbours within 40"

Selecting Spiral Galaxies

- Use Galaxy Zoo classifications as benchmark
- Consider multiple parameters NOT linked to SF but may separate E's and Sp's
- Adaptively discretize parameter space and define subvolume linked to Sp's
- Test using independently classified samples and Independent observables

XMM-XXL consortium meeting 22.-26.07.2013

Grootes et al., 2013, submitted

Selecting Spiral Galaxies

- Best parameter combination is (log(n),log(r_e),M_i)
- Very pure samples of spirals (< 2% contamination by visually classified ellipticals)
- Completeness of GZ spirals @ ≥ 77 %
- Very good recovery of Hα EQW distribution
- Good recovery of T-type distribution, slight bias against S0/Sa

1

Norm. freq

Pure sample with robust morphologies including quiescent sources.

XMM-XXL consortium meeting 22.-26.07.2013

Selecting Spiral Galaxies

XMM-XXL consortium meeting 22.-26.07.2013

Meiert W. Grootes

Figs from Grootes et al., 2013 submitted

0.05

0.1

0.0

= 0.25

 $\tau_{B'}^{f} = 0.64$

 $6.7 < \log(\mu_{\star}) < 7.3$

 $7.3 < \log(\mu_{\star}) < 7.7$

-14

-16

-20

-22

-14 - H

MNUV

- UV SFR total SFR, short timescale 0 (~100 Myr)
- Heavily affected by attenuation (~2 mag, ~1mag due to orientation)
- Use Rad. Trans. Modeling (Popescu+2011)
- Estimate input using only optical info (calibrated on sources with FIR data; H-ATLAS)

- Spirals following (log(n),log(r_e),M_i) after correction very tight (σ ≈ 0.27 dex) single PL (γ = -0.5)
- Significant reduction in scatter w.r.t standard attenuation correction methods —> precision and sensitivity

XMM-XXL consortium meeting 22.-26.07.2013

Application to GAMA

- 939 spirals in 584 groups with z<0.13 ; ~4000 Field spirals
- •GAMA Field spirals as whole spiral sample (similar scatter)
- Merging systems (including spiral) show enhanced SFR
- Close Pairs (50/h kpc 1000km/s) similar to Field
- 'isolated' group spirals show suppressed median SFR
- Dist. of GAMA group parameters highly similar between group w/ & w/o spiral (being investigated further)

XMM-XXL consortium meeting 22.-26.07.2013

