

The GAMA Survey Current Progress Future Plans WAVES

GAMA@ICRAR & GAMA TEAM

Aaron Robotham

Luke Davies

Amanda Moffett

Mehmet Alpaslan

Rebecca Lange

Angus Wright

Stephen Andrews

Joe Liske (Project Manager, ESO)

Lee Kelvin (Innsbruck)

Ivan Baldry (LJMU)

+ 80 collaborators near and far:

International Centre for Radio Astronomy Research (ICRAR)

250,000 galaxies to r<19.8mag over four 60 sq deg (~98% complete, selected from SDSS)

- catalogue of 25,000 groups (halos) to 10¹²M_o
- 20 band photometry + gas (ASKAP) [GALEX+VST+VIKING+WISE+Herschel]
- structure on 1kpc to 100Mpc scales to z~0.2
- DR2 available via http://www.gama-survey.org/dr2/

Structure on 1kpc to 100Mpc scales

Groups (100kpc-1Mpc)

Filaments (10-100Mpc)

Galaxy Stellar Mass Function

Final limit around here.

-20

mag)⁻¹]

(0.5

og:0[\$(Mpc/h)-3

-3

-4

-5

104

-22

-2

log_{i0}[φ(Mpc/h)⁻³ (0.5 π + 5.5

-5 104

ą1000

(E) 100 N 10

1 -22

mag)⁻¹]

-20

E1000

9 100 (100 (100 (100) (100)

Galaxy Luminosity Functions

Driver et al (2013)

Morphological/component mass-size relations

Lange et al (2014)

GAMA Groups catalogue

Over 25k pairs/halos identified, 5k with N>4 members

WISE calibration of SFR

Cluver et al (2014)

GALFIT3 Bulge-disc decompositions of 3k z<0.065 galaxies

SMBH Mass fn

Next steps for GAMA

- MAGPHYS analysis of all 250k galaxies
- Into the LSBG Universe with VST
- Structural decomp on VST with SIGMA(GALFIT-M)
- HST GAMA
- Integration of zCOSMOS/COSMOS
- SAMI and GAMA
- Group refined photo-z's
- ASKAP/DINGO
- Alfalfa
- JWST

Quick look at MAGPHYS DMU

Imaging resolution & depth $1.5" \rightarrow 0.7"$, r ~22 \rightarrow r~24

GAMA z = 0 to 4

GAMA HST

Currently ~100 pointings exist with more coming due to Hatlas SNAP follow-up mainly WFC and ACS in a variety of filters

GAMA HST

F814W most popular filter (i) for ACS or F110W for WFC

F098M F110W F125W F139M F140W F153M F160W F200LP F350LP F390M F438W F475X F555W F600LP F606W F814W G102 G141

SDSS r-band imaging HST F775W imaging

zCOSMOS re-reduction

zCOSMOS completeness

Figure 7. Comparison between our r < 22 meta G10 sample and various other redshift campaigns in the region.

- Independent programme led by Scott Croom
- SAMI=Sydney AAO Multi-object IFU
- Following up of ~2000 GAMA+Cluster selected targets
- Mostly z~0.04-0.08
- Will produce velocity maps, SFR maps, Z maps etc

Can we distinguish E's from S0's?

See Lisa Fogarty's talk)

Group refinement

- Two methods:
- Combine photo-z PDF with I-o-s group radius

• Combine photo-z PDF with group mean linking length

ASKAP data is coming...

Optical data (stars)

Radio data (hydrogen)

hirty-six 12m antennas with phase array feeds 30 sq deg field of view GAMA23 region primary deep target perations with 12 antennas comence Dec-2014 HI to z=0.45

Internat Centre f Radio Astrono Researc

GAMA and HIPASS

GAMA ID: 220687, HI RA: 12:11:12.0, HI Dec: +01:28:23 GAMA RA: 12:11:19.9, GAMA Dec: 1:29:33.0, Separation: 0:2:17.6

GAMA and Alfalfa

PolA

Synergy: JWST

z~0.7 compact groups are the best foreground lenses to probe the z>10-12 Universe

z>8 with GAMA groups

Lensing capability of GAMA groups

4MOST = 3000 spine R~5000 spectrograph for VISTA capable of probing to r<22 mag

- Testing CDM v WDM v SIDM
- Study of energy and mass on 1kpc to 100Mpc scales (i.e., sub-BAO)
- Creating two legacy surveys with 4MOST spectra + Euclid res imaging + SKA Phase I

WAVES in context

DEEP: Bridge the z=0.2 to 1.0 gap: 1.2 million galaxies, 50,000 groups, 5,000 filaments WIDE: Survey the dwarf domain: 0.8 million galaxies, 50,000 low mass groups, 5,000 filaments

Cannot resolve structure from ground beyond z~0.2 for wide areas

HST field-of-view too small

Euclid capable of 0.2" with VIScam

Can resolve bulges to any z

Synergy with SKA Phase I

A deep 100 sq deg SKA1 survey:

- HI detections of massive systems
 - HI masses
 - HI dynamics
- Optically motivated source finding
 - Expand sample x3
- HI stacking using WAVES selection
 - galaxy type
 - halo mass
 - SFR
- Continuum
 - SFR estimates

ICRAR

A wide 750 sq deg SKA1 survey

- As above by shallower
- Similar to WALLABY & DINGO but to z~1

WAVES = 50x COSMOS Coming soon(ish)

DEEP: Bridge the z=0.2 to 1.0 gap: 1.2 million galaxies, 50,000 groups, 5,000 filaments

WIDE: Survey the dwarf domain: 0.8 million galaxies, 50,000 low mass groups, 5,000 filaments

International Centre for Radio Astronomy Research

