

Quantifying Secular Evolution Through Structural Decomposition

Lee Kelvin

University of St Andrews / ICRAR (UWA)

International Centre for Radio Astronomy Research

• How do structures form?

- bulge \rightarrow disk \rightarrow bar \rightarrow pseudo-bulge
- disk \rightarrow bulge \rightarrow ???
- Are ellipticals and bulges essentially the same?
- How does environment shape galaxy structure?
- How is stellar mass distributed between structure?
- Can structure be used to trace evolution?

Single-Sérsic Photometry

Structural Decomposition

- Single-Sérsic modelling
- Total size, mag, index
- Multi-component modelling
 Bulse Diele decompositions
- Bulge-Disk decompositions

Stellar mass/light breakdown

- Wavelength dep. on structural measurements (see Kelvin et al. 2012)
- Thursday 23rd August 2012

Lee Kelvin

0

Galaxy and Mass Assembly

- ~340,000 galaxies
- r < 19.8 mag</p>
- ~310 deg²

"study structure on scales of 1 kpc to 1 Mpc"

galaxy... → clusters → groups → mergers → structure

Thursday 23rd August 2012

Lee Kelvin

Volume-Limited Sample

Thursday 23rd August 2012

Lee Kelvin

Thursday 23rd August 2012

y vs

Eyeball Classification

Thursday 23rd August 2012

Lee Kelvin

ICRAR Astronomy Research

Eyeball Classification

Thursday 23rd August 2012

Lee Kelvin

ICRAR

Thur

Eyeball Classifications

Multi-Component Models

M01: Single-Sérsic

M02: De Vaucouleurs bulge + exponential disk

M03: Sérsic bulge + exponential disk

M04: Sérsic bulge + Sérsic disk

M01: Single-Sérsic

Lee Kelvin

THE UNIVERSI ESTERN AUSTRALIA

M02: De Vaucouleurs bulge + exponential disk

Thursday 23rd August 2012

Lee Kelvin

sity ews

M03: Sérsic bulge + exponential disk

Thursday 23rd August 2012

Lee Kelvin

sity rews

THE UNIVERSITY OF WESTERN AUSTRALIA Arbieving International Excellence

M04: Sérsic bulge + Sérsic disk

Thursday 23rd August 2012

Lee Kelvin

rews

THE UNIVERSITY OF WESTERN AUSTRALIA Achieving International Excellence

M01: Single-Sérsic

Thursday 23rd August 2012

Lee Kelvin

sity rews

M02: De Vaucouleurs bulge + exponential disk

Thursday 23rd August 2012

Lee Kelvin

rews

M03: Sérsic bulge + exponential disk

Thursday 23rd August 2012

Lee Kelvin

ty ws

M04: Sérsic bulge + Sérsic disk

Thursday 23rd August 2012

Lee Kelvin

University of St Andrews

M01: Single-Sérsic

M02: De Vaucouleurs bulge + exponential disk

Thursday 23rd August 2012

Lee Kelvin

sity rews

M03: Sérsic bulge + exponential disk

Thursday 23rd August 2012

Lee Kelvin

rews

M04: Sérsic bulge + Sérsic disk

Thursday 23rd August 2012

Lee Kelvin

sity rews

Model Choice

How do we select the 'best' model?

Lee Kelvin

Model Choice

How do we select the 'best' model?

Bayesian Information Criterion:

$$\mathrm{BIC} = \chi^2 + k \cdot \ln(n)$$

- total goodness of fit χ^2
- k number of free parameters
- number of contributing pixels n

Model Choice

How do we select the 'best' model?

Bayesian Information Criterion:

$$BIC = \chi^2 + k \cdot \ln(n)$$

- χ^2 total goodness of fit
- k number of free parameters
- *n* number of contributing pixels

Use visual classifications as a guide:

Structural Results

Sérsic index

Thursday 23rd August 2012

Lee Kelvin

International Centre for Radio Astronomy Research

Structural Results

Half-light radius

Thursday 23rd August 2012

Lee Kelvin

Early/Late type bulges

Thursday 23rd August 2012

Lee Kelvin

ICRAR

Component Mass

Stellar Masses: Taylor+ 2011

log(Stellar Mass)

Ellipticals dominate at high-mass, disks at low-mass

Late-type bulges share more in common with disks than early-type bulges

Lee Kelvin

Stellar Mass Breakdown

Mass in the local Universe:

Hierarchical merging Gas accretion Secular evolution ~45.8% ~47.7% ~6.5%

Thursday 23rd August 2012

Lee Kelvin

Summary

Automated, fast and robust structural decomposition is essential in order to model increasingly large galaxy datasets to a high level of accuracy.

Early-type bulges are well described by the Kormendy relation, whereas late-type bulges do not follow this relation → early-type bulges ~ classical bulge, late-type bulges ~ pseudo-bulge

The evolutionary processes of monolithic collapse/merging and gas accretion contribute roughly equal measures of stellar mass in the local universe.

Secular evolutionary processes contribute $\sim 6.5\%$ of the total stellar mass at z < 0.06 through the creation of pseudo-bulges.

Future Work

- Bulge-Disk-Bar decomposition (ring, secondary disk, AGN, ...)
- Extension of the redshift baseline and imaging quality/depth
 → HST, VST KIDS, VISTA VIKING

Lee Kelvin

Bulge-Disk decomposition essential for a full understanding of galaxy structure and mass breakdown

Thursday 23rd August 2012

Lee Kelvin

'Little Blue Spheroids'

Thursday 23rd August 2012

AM

Lee Kelvin

ICRAR Intern Centr Radio Astro Reser

'Little Blue Spheroids'

Initially classified as

- early-type
- single-component

Closer inspection:

- star-forming
- blue

Also noted as 'Little Blue Fuzzies' in Brough et al. (2011)

Reassigned \rightarrow disk

previous-generation to current-generation to next-generation survey data

moving from

Thursday 23rd August 2012

Lee Kelvin

University of St Andrews

Thursday 23rd August 2012

y vs

University of St Andrews

Thursday 23rd August 2012

International Centre for Radio Astronomy Research

SIGMA: Structural Pipeline

Thursday 23rd August 2012

AM

Lee Kelvin

SIGMA: Structural Pipeline

AR

R Wrapper:

- → Source Extractor
- → PSF Extractor
- → CFITSIO
- → GALFIT 3

Speed: 15 seconds

per galaxy per passband per processor

ICRAR

THE UNIVERSITY OF

WESTERN AUSTRALIA

SIGMA

Structural Investigation of Galaxies via Model Analysis

Thursday 23rd August 2012

Lee Kelvin

THE UNIVERSITY OF WESTERN AUSTRALIA