

Overview

- Wide-Field Optical Galaxy redshift surveys:
 - Photo-z's v spectro-z's
 - − Luminosity functions (ESP \rightarrow 2dFGRS \rightarrow SDSS \rightarrow MGC \rightarrow GAMA)
 - − Galaxy Stellar Mass function (SDSS→GAMA)
- Expansion in wavelength:
 - Bimodality (SDSS)
 - − Star-formation (CFRS \rightarrow HST \rightarrow GALEX)
 - − Dust (2MASS→UKIDSS→HERSCHEL)
 - − Gas (HI) (Parkes \rightarrow ARECIBO \rightarrow ASKAP/MeerKAT \rightarrow SKA)
- Increase in spatial resolution:
 - Morphology (HST \rightarrow SDSS \rightarrow MGC \rightarrow GAMA)
 - Surface brightness and selection bias (SDSS & MGC)
 - Sersic profiles & structural analysis (GIM2D, BUDDHA, GALFIT3)
 - Size evolution
- Galaxy formation: a two-stage process?

Photo-z v Spec-z

Photo-z v Spec-z

Beware of relying on them too much

Photo-z v Spec-z

Impact of UV/optical/NIR surveys

Survey	Papers	Citations
SDSS	2065	86241
2MASS	704	19812
HDF/UDF/GOODs/GEMs	555	32561
2dF	371	23457
GALEX	336	7940
CfA1&2	277	15444
zCOSMOS/VVDS/DEEP/GDDS	158	6530
COMBO-17	83	5743
UKIDSS	80	2564

ADS abstract search on <survey>+"galaxy"

All known redshifts: ~2.7million

Other

Table 4: Redshift surveys from Anglo-Australian Observatory

survey	dates	observations
2dFGRS	1996-2001	227k
20Z	1996-2001	28k
MGC	2002-2006	8k
2SLAQ-LRG	2003-2006	16k
2SLAQ-QSO	2003-2006	3k
6dFGS	2003-2008	110k
UCD/Fornax	2002-2006	16k
AUS	2006+	50k
WiggleZ	2007+	140k (200k)
GAMA	2008+	90k (250k)
total		688k (910k)

: 15%!

CfA/2MASS	1990s	45k
ESP	1999	15k
SDSS	1999-2006	1400k
VVDS	2006-	150k
zCOSMOS	2006-	40k
VIPERs	2009-	100k
Deep1&2	2000-	65k
		1815k
AAO respo		
SDSS respon		

Driver et al 2009, A&G, 50, 12

Key topics

Торіс	Key papers
Luminosity Fns	Bell et al 03; Cole et al 01; Faber et al 07; Blanton et al 03, 05; Bouwens et al 06, 07; Driver et al 2011
Mass estimation	Kauffmann et al 03; Bell & de Jong 01; Bundy et al 06, Taylor et al 11
Galaxy Mass Fns	Bell et al 03; Baldry et al 08, 11; Fonatanna et al 04; Ilbert et al 10
Bimodality	Strateva et al 01; Baldry et al 04, 06; Driver et al 06
SMBHs and galaxies	Gebhardt et al 00; Ferrarese & Merritt 00; Marconi et al 04; Vika et al 11
Dust and opacity	Calzetti et al 00; Choi et al 07; Shao et al 07; Driver et al 07, 08
Mass-metallicity rel'n	Tremonti et al 04; Savaglio et al 2005; Erb et al 06; Baldry et al 08
Mass-size rel'n	Shen et al 03; Blanton et al 05; Driver et al 05, Trujillo et al 06, 07
Star-formation rates	Brinchmann et al 04; Kauffmann et al 03; Salim et al 07; Juneau et al 05, Hopkins & Beacom 06

Luminosity functions

© Astronomical Society of Australia 0000

Parameter space probed by galaxy surveys

Survey limits... ...biggest is not always best

Mass-size or Lum-SB relation

26 20 22 24 22 24 26 22 24 26 20 22 24 0.1 -20.5<M,<-20.0 -20.0<M,<-19.5 400 -21.5 to -21.0 -19.5 to -19.0 -17.5 to -17.0 -15.5 to -15.0 = 0.64= 0.60150 600 300 0.01 0.01 100 400 200 0.001 0.001 50 200 100 0.0001 0.0001 18 19 20 21 22 23 24 18 19 20 21 22 23 24 0.1 0.1 1200 800 -18.5<M_<-18.0 $-18.0 < M_{-} < -17.5$ -21.0 to -20.5 500 -19.0 to -18.5 -17.0 to -16.5 -15.0 to -14.5 1000 = 0.77 = 0.82 600 400 $\phi(h^3 \text{ Mpc}^{-3} \text{ (mag arcsec}^{-2})^{-1})$ 0.01 0.01 800 300 600 400 200 0.001 0.001 400 200 100 200 0.0001 0.0001 18 19 20 21 22 23 24 18 19 20 21 22 23 24 0.1 0.1 100 -16.0<*M*,<-15.5 $-16.5 < M_r < -16.0$ -20.5 to -20.0 -18.5 to -18.0 -16.5 to -16.0 -14.5 to -14.0 80 150 - 0 = 0.95 $\sigma = 0.99$ 80 0.01 0.01 60 60 100 40 40 0.001 0.001 50 20 20 0.0001 0.0001 18 19 20 21 22 23 24 18 19 20 21 22 23 24 0.1 0.1 -20.0 to -19.5 -18.0 to -17.5 -16.0 to -15.5 -14.0 to -13.5 $-14.0 < M_{\tau} < -13.5$ $\sigma = 1.16$ -14.5<M_<-14.0 60 = 1.12 0.01 30 15 0.01 50 40 0.001 20 10 30 0.001 20 10 0.0001 10 0.0001 10-18 19 20 21 22 23 24 18 19 20 21 22 23 24 18 20 22 24 26 20 26 22 24 26

MGC: Driver et al 05

Absolute effective surface brightness (μ^{e} , mag arcsec⁻²)

SDSS NYUVAGC: Blanton et al 05

Luminosity functions (field)

Luminosity functions (field)

Galaxy Mass Function

GAMA: Baldry et al 2011 zCOSMOS: Pozetta et al 2010

> Definite Upturn

Known to 10⁸M_{solar}

Bimodality

Strateva et al (2001)

Galaxy Mass Function

Baldry et al (2011)

Upturn seems to be due to bimodality

Red upturn?

Possibly due to contamination from dusty systems

The reddest galaxies in the Universe!

-3

 $^{-4}$

 $^{-5}$

-3

 $^{-4}$

 $^{-5}$

-3

 $^{-4}$

 $^{-5}$

Dust opacity

Dust attenutation a major effect

Models from: Popescu et al (2000); Tuffs et al (2004), see also Popescu et al (2011) 2 dust discs plus clumpy dust, central face on B band opacity = 3.8

The mean photon escape fraction

Sanity check: Energy balances

Driver et al (2008)

The Cosmic Star-formation History

Hopkins & Beacom (2003): Cosmic SFH compendium

Build-up of stellar mass

Sawicki et al 2011 (astro-ph/1108.5186)

Mass-metallicity relation

Tremonti et al 2008

Baldry, Glazebrook & Driver 2008

AGN Galaxy connection

Brinchmann et al 2004

Star-formation and BH accretion

Central star-formation rate v BH growth

Diamond-Stanic & Rieke (2011)

SMBH-Bulge relations

How the mass is distributed

How to combine optical/radio data?

STARLIGHT GAS (HI)

Optical and radio image of NGC891

Evolution of the HI (or not?)

ASKAP (Australian Square Kilometer Array Pathfinder) A\$150 million investment to construct unique radio facility to study gas in galaxies

Luminosity functions (FUV)

Faint-ends uncertain But luminosity density OK → Cosmic SED

> Wyder et al 05 Budavari et al 10 Robotham & Driver 10 Driver 11

Luminosity functions (g)

Faint-ends uncertain But luminosity density OK → Cosmic SED

> Blanton et al 03 Montero-Dorta et al 09 Hill et al 10 Loveday et al 11 Driver et al 11

Luminosity functions (K)

Faint-ends uncertain But luminosity density OK → Cosmic SED

> Jones et al 06 Cole et al 02 Kochaneck et al 01 Bell et al 03 Smith et al 09 Hill et al 10 Driver et al 11

Compendium of LFs: CSED

Compendium of LFs: CSED

Joint structure colour cut

Kelvin et al (2011)

Bimodality or duality ?

FUV-K LFs by colour cut

 $\log_{10}[\phi(h^3 Mpc^{-3} (0.5 mag)^{-1})]$

JKIDSS

Attenuated spectrum for spheroids and discs

S D S S

Unattenuated spectrum for spheroids and discs

Using photon escape fraction from Driver et al (2008)

Milennium Galaxy Catalogue

PREDICTED far-IR emission

UKIDSS

GA

Galaxy Evolution Explorer

PREDICTION v FIR data

Modelling the Cosmic SED

[Duality not bimodality]

- Two axioms:
 - AGN activity traces spheroid formation
 - SMBH-bulge relations
 - AGN coincident with star-formation
 - Spheroid formation dominates at high-z
 - Ages & metallicities of nearby Ellipticals

CSFH v AGN Activity

AGN activity does not seem to trace SFH at high-z

- 1. Data uncertain
- 2. Redshift axis misleading

.....lets switch to time \rightarrow

CSFH v AGN activity v Time

Simple fits to empirical data: SFR v time

$$\log_{10}(\rho_S) = 2.44 \times 10^{-7} \left(\frac{27.76}{t_U}\right)^{10.21} \exp\left(-\frac{27.76}{t_U}\right)$$
$$\log_{10}(\rho_D) = 7.78 \times 10^{-4} \left(\frac{30.54}{t_U}\right)^{6.01} \exp\left(-\frac{30.54}{t_U}\right)$$
$$\log_{10}(\rho_{All}) = 6.33 \times 10^{-2} \left(\frac{11.18}{t_U}\right)^{3.69} \exp\left(-\frac{11.18}{t_U}\right)$$

MODEL:

Fully constrained zero parameter model!

 $Z_{7=0}$ = Gallazzi et al (2005) No free parameters....it just works.

Mean metallicity of the Universe

Derived from cumulative SFH.

Normalised to match local constraints on the mean low-z metalicity of spheroids and discs

i.e.,

Gallazzi et al (2005): Spheroids Z=0.025 Discs Z=0.06

Fixed metallicity

Z=0.025 (Spheroids) Z=0.05 (Discs)

Z=0.0 (Spheroids) Z=0.0 (Discs)

Modeling the CSED

Baldry & Glazebrook (2003): Initial Mass Function

Alternative IMFs

Stellar mass evolution

Again no free params.

Aside:

Mass loss > $\dot{\rho}$

Spheroids slowly evaporating

 ρ_* close to maximum

Driver et al (1998, ApJ, 496, 93)

The EBL

Entire energy output of Universe from stars z=7 to 0

Assumes basic dust properties do not evolve

Summary

- Wide-Field Optical Galaxy redshift surveys:
 - <u>Photo-z's</u> v spectro-z's
 - − Luminosity functions (ESP→2dFGRS → SDSS → MGC → GAMA) → CSED
 - − Galaxy Stellar Mass function (SDSS→GAMA) Upturn seen
- Expansion in wavelength:
 - Bimodality (SDSS) or bulge-disc duality
 - − Star-formation (CFRS→HST→GALEX) now divided into spheroids and discs
 - − Dust (2MASS→UKIDSS→HERSCHEL) big problem how to deal with it (FIR)
 - Gas (HI) (Parkes→ARECIBO→ASKAP/MeerKAT→SKA) coming soon
- Increase in spatial resolution:
 - − Morphology (HST \rightarrow SDSS \rightarrow MGC \rightarrow GAMA) bulge-disc decomp needed
 - Surface brightness and selection bias (SDSS & MGC) a big issue for dwarf systems
 - Sersic profiles & structural analysis (GIM2D, BUDDHA, GALFIT3)
 - Size evolution = disc growth
- Galaxy formation: a two-stage process?
 - Transition at z=1.5
 - Zero parameter prediction of energy output of Universe