

The GAMA Multi-Wavelength Survey: The Stellar-Mass Halo-Mass Paradigm

Aaron Robotham University of St Andrews & The GAMA Team

University St Andrews

April 20, 11

GAMA

GAMA I (II) Outline

- An r-band selected redshift survey:
 - Three (Six) regions each ~ 4x12 deg (5x12 deg)
 - ~1000 targets per sq deg (2dFGRS~120, SDSS~70) ~8 tiles per unit area
 - Testing CDM via HMF, merger rates, and SFE
 - Total allocation 66 (178) nights
- A multi-wavelength study of galaxies:
 - FUV,NUV,ugrizYJHK,mid-IR,far-IR,20cm,21cm,1m (AGN, stars, gas, dust)
 - 1kpc resolution in ugrizYJHK to z<0.1 (structural analysis)
 - Robust halo masses (internal/external environmental markers)
 - Estimated data value A\$55 million
- GAMA Team now includes >50 scientist across >30 institutions.

April 20, 11

Why do we need all this photometry?

April 20, 11

GAMA

Aaron Robotham

University St Andrews

• GAMA surveys will be extremely complimentary in terms of depth.

- Large variation in term of PSF size.
- Optical-NIR have matched aperture Sextractor photometry using seeing convolved mosaics.

• Bigger task is combining GALEX (Ellen Andrae)/ H-ATLAS (Nathan Bourne) and in the future ASKAP...

This range of photometry gives GAMA high fidelity stellar mass

• Ned Taylor has produced stellar masses for GAMA using a vast library of SEDs combining UV – optical – IR data (2011, MNRAS in prep).

• Currently have issues with optical to IR match, but work is ongoing to resolve this.

 Stellar masses have been used to create the GAMA GSMF (Baldry 2011, in prep).

• For the first time we see the GSMF upturn with K-band data!

Aaron Robotham

April 20, 11

Where does GAMA fit in?

University of St Andrews

April 20, 11

GAMA

GAMA Galaxy Group Catalogue Alias: G³C

- Tried various implementations of FoF and halo based grouping
- FoF: Links built between individual galaxies
 Groups built from finding common links
- Halo: Cores of groups found by constructing the voronoi tessellation
 - Scale core membership to define group extent

• FoF grouping much more flexible and successful when tested against mocks, used as the basis of the final group catalogue algorithm.

- At the simplest level we:
 - Calculate the GAMA luminosity function (LF).
 - Require that galaxies are significantly linked when they are locally overdense.
 - Do this separately radially and in projection.
 - We then construct groups out of common linking. April 20, 11

Some technical points...

• To create meaningful group catalogues we need to understand the biases expected by choosing different approaches to grouping

 Solution is to test on mock catalogues- created by Alex Merson (Durham) and Peder Norberg. This is a combination of the Millennium Simulation (MS) plus the GALFORM Semi-Analytic (SA) galaxy formation recipe on top.

• 27 GAMA like volumes ($z= 0 \rightarrow 0.5$, 48 sqdeg) exist with known associations between dark matter halos and semi-analytic galaxies (Richard Bower 2006).

• In some sense, we need an approaching to grouping that does "the best job" at recovering correct groupings

Some technical points...

 Chosen approach is to optimise for both finding halos and accurately determining purity of halos

• To find halos we say match is successful when bijective: more than $\frac{1}{2}$ of mock group is in same group as more than $\frac{1}{2}$ of FoF group

 Find fraction of bijective FoF and mock groups where N>5 (because this is hard)

• To find halo purity find fraction of galaxies that are common as a fraction of best matching FoF/ mock group

- Scale by multiplicity and calculate overall purity for FoF and mock groups
- This approach penalises over <u>AND</u> under grouping!

How good do we expect our groups to be?

April 20, 11

Aaron Robotham

University of St Andrews

Group Dynamical Mass and Luminosity using global correction

April 20, 11

Aaron Robotham

University of St Andrews

Even if we perfectly recover the groups, scaling is not constant!

	M	′ =	Ad	$\sigma^2 r$	L	$_{\rm FoF} = L$	$\int_{A} L_{\rm ob} \frac{\int_{-3}^{M}}{\int_{-3}^{M}}$	$\frac{-14}{-30}\phi_{\rm G}$	ама (Л Рдама ($\frac{M_r)dM_r}{(M_r)dM_r}$.0 ^{0.4<i>M</i>} ,	0
	$2 \leq N_{\text{FoF}} \leq 4$			$5 \leq N_{\text{FoF}} \leq 9$			$10 \leq N_{\rm FoF} \leq 19$			$20 \leq N_{\rm FoF} \leq 1000$		
	19.0	19.4	19.8	19.0	19.4	19.8	19.0	19.4	19.8	19.0	19.4	19.8
$0 \leqslant z_{ m FoF} \leqslant 0.1$	20.00	18.98	18.00	11.78	10.84	10.85	11.37	12.00	11.51	12.05	12.58	12.68
$0.1 \leqslant z_{ m FoF} \leqslant 0.2$	20.18	19.45	19.17	10.34	10.52	10.71	10.96	11.07	10.91	9.19	10.36	10.90
$0.2 \leqslant z_{ m FoF} \leqslant 0.3$	21.21	21.53	19.82	8.99	10.28	11.17	8.00	8.56	9.89	6.73	8.33	9.64
$0.3 \leqslant z_{ m FoF} \leqslant 0.5$	13.56	17.37	17.76	4.37	6.11	7.85	3.45	5.43	6.72	4.84	5.59	6.87
	$2 \leqslant N_{ m FoF} \leqslant 4$			$5 \leqslant N_{\rm FoF} \leqslant 9$			$10 \leq N_{ m FoF} \leq 19$			$20 \leqslant N_{\rm FoF} \leqslant 1000$		
	19.0	19.4	19.8	19.0	19.4	19.8	19.0	19.4	19.8	19.0	19.4	19.8
$0 \leq z_{ m FoF} \leq 0.1$	1.01	1.03	1.05	1.01	1.02	1.02	1.23	1.18	1.11	1.62	1.60	1.54
$0.1 \leqslant z_{ m FoF} \leqslant 0.2$	0.79	0.85	0.90	0.76	0.83	0.87	0.88	0.92	0.96	0.95	1.03	1.07
$0.2 \leqslant z_{ m FoF} \leqslant 0.3$	0.46	0.58	0.68	0.47	0.57	0.66	0.55	0.63	0.74	0.58	0.71	0.79
$0.3 \leq z_{\rm EoF} \leq 0.5$	0.21	0.31	0.40	0.23	0.34	0.42	0.31	0.40	0.49	0.27	0.47	0.53

April 20, 11

Aaron Robotham

University St Andrews

April 20, 11

University of St Andrews

University St Andrews

Small Group

Z ~ 0.32

4 w. GAMA

0 pre GAMA

All within 2dF fibre collision radius.

April 20, 11

Z ~ 0.41

4 w. GAMA

0 pre GAMA

Huge number of background members.

April 20, 11

University St Andrews

How do we do overall?

Aaron Robotham

University St Andrews

SDSS versus GAMA: N>=5 (high fidelity groups)

SDSS DR7 (done):
 8000 sqdeg r<17.77
 60 -> 70% comp. in
 dense regions

• GAMA I (done): 144 sqdeg r<19.4 (for this plot)

~ 99% comp.

GAMA II (doing):
360 sqdeg r<19.8
95 -> 99% comp.

April 20, 11

Aaron Robotham

University of St Andrews

GAMA

April 20, 11

So what is going on at low mass?

 Problem appears to be that the mocks (MS + SA) produce far too many compact groups.

 It would appear that the recipe used for "simulating" dynamical friction is far too crude, and doesn't merge groups rapidly enough.

GAMA Database/Website http://www.gama-survey.org/

- GAMA website is up and running.
- It includes the first public release of data.
- We have SQL server to search catalogues.
- Other data products:
 - Spectra
 - Swarp mosaics
 - 2D profiles
 - SFR
 - Stellar Mass

Conclusions

• GAMA is offering the astronomical community the definitive low-z galaxy database.

• Phase I is complete, and many papers based on this data are about to be released.

- My work has included producing the GAMA Galaxy Group Catalogue (G³C).
 - We find discrepancies between the data and the MS-SA mocks. Work ongoing to discover origin.
- Now moved on to observing GAMA-II (N+S).
- Email: asgr@st-and.ac.uk / spd3@st-and.ac.uk

